Narrowband vs Wideband Channels

- narrow vs wide refers to bandwidth \rightarrow symbols / second
- why do we use wideband: more bandwidth \Rightarrow more data rate

capacity = bandwidth $* \log(1 + SNR)$

• having more bandwidth means for the same SNR, you have more capacity

Challenges of wideband

1. Inter-Symbol Interference (ISI)

- with multipath symbols, you get multiple copies @ different times and strengths at the receiver
- lower bandwidth leads to longer symbols (timewise) (so higher bandwidth
 = shorter symbols)
- \circ smaller symbols means there is more ISI confusion
- \circ if there is a bit of overlap between different symbols that arrived at the same time because of the delay \rightarrow leads to confusion on what symbol it should be read as

2. Channel Itself

- simple equation for channel: $y = hx + n \rightarrow but$ too simple for wideband
- more realistic (but complicated) equation:

$$y(t) = h_1 x(t - T_1) + h_2 x(t - T_2) + h_3 x(t - T_3)$$

 \rightarrow T_n is the delay, which is more relevant in wideband (but trivial in narrowband)

Combatting wideband challenges

- in general, we know that wideband channels occupy more spectrum/frequency.
- the assumption that the channel is flat, however, does not really hold because of multipath fading
- Solution:
 - $_{\odot}$ $\,$ divide the wideband channel into many narrowband channels
 - $\circ~$ these split channels operate like narrow band channels $\rightarrow~$ subchannel/subcarrier
 - basically, this parallelizes the channels, so we get the benefits of both narrow and wide bands
- What if the narrow channels seep into the neighboring frequencies?
 - use every other frequency band

Orthogonal Frequency Domain Multiplexing (OFDM)

Motivation

- we want to design combinations where the peak of one of these channels has all the other channels' leak at $o. \rightarrow minimized$ interferences
- try to find the mathematical pattern for this:

Distinct Fourier Transform (DFT):

- used to convert between time and frequency domains.
- equivalent to what we want above. </aside>

The Process/How

- We want to send $x_1 \dots x_n$ symbols in parallel
 - these symbols start out in the frequency domain \Rightarrow DFT \Rightarrow time domain peaks \Rightarrow wideband now can transmit this out.

$$x_f = \sum_{n=0}^{N-1} x_n \, e^{\frac{j2\pi f_n}{N}}$$

- essentially, these are now linear combinations of all the other frequencies without any interference with each other
- this is computationally expensive, however, so it was not used much until recently
- important to note: all of these sub-bands are serving the same transmitter

OFDM Transmitter

- center frequency is that at the center of the frequency band.
- bits → symbols → [DFT] → symbols in the time domain → [add the carrier frequency] → send through antenna

OFDM Receiver

- at the antenna, keep sampling
- use 2 windows, and take the ratio of Window A/Window B
- ratio starts at 1, as A starts to see the signal, the ratio between the two increases. When B starts to enter the signal, we get ratio=1 again → sliding window packet detection
 - \circ $\,$ we know where the packet starts based on the peak of the ratio.